If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+2=205
We move all terms to the left:
7p^2+2-(205)=0
We add all the numbers together, and all the variables
7p^2-203=0
a = 7; b = 0; c = -203;
Δ = b2-4ac
Δ = 02-4·7·(-203)
Δ = 5684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5684}=\sqrt{196*29}=\sqrt{196}*\sqrt{29}=14\sqrt{29}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{29}}{2*7}=\frac{0-14\sqrt{29}}{14} =-\frac{14\sqrt{29}}{14} =-\sqrt{29} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{29}}{2*7}=\frac{0+14\sqrt{29}}{14} =\frac{14\sqrt{29}}{14} =\sqrt{29} $
| 5(f-73)=80 | | -3(3-5a)+5(1-4a)=21 | | 14=z-8 | | -2/3+1/6x=3 | | 10/2.4=x/2.64 | | -96=8(3x-6) | | (3x+1)=(5x+7) | | 8+3(7b+1)=95 | | 22=b+19 | | -188=-4(6r-1) | | -8=-x+12 | | -4(5v+3)=-112 | | x=54/3*3 | | -7n+2-3=13 | | .16x+23=x1 | | n-2-5n=-10 | | (2/5)x+4=8 | | 54=y−14. | | 8-6m-4=10 | | -3+6t=1 | | 2w^2-31w+15=0 | | -2-3r+r=12 | | 2x+x+2x+x-15=180 | | -10(n-95)=-10 | | r/4+19=21 | | -58=-2(1-4v)-4(-8v+4) | | 28u^2+u-2=0 | | 7(-3p-3)-(6p+4)=-79 | | 30=2(s-60) | | 5a+4(1+2a)=-100 | | 21+3x=42 | | -2+3g=16 |